Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Fragmentation of marine snow affects the downward flux of organic matter, and other aggregate‐associated compounds such as oil. Using phytoplankton aggregates, we demonstrate that marine snow with oil, termed marine oil snow, had a higher resistance to fragmentation compared to marine snow without oil when exposed to turbulence ex situ. At moderate shear levels, typical of the ocean mixed layer, 17% of marine snow without oil broke, whereas 63% of marine snow fragmented at intermediate shear. In contrast, only 17% and 33% of marine oil snow fragmented at the intermediate and highest shear levels, respectively. Our results suggest that oil increases the cohesion and stability of aggregates making them less susceptible to breaking. This work contributes toward explaining the exceptional oil sedimentation event following the 2010 spill in Gulf of Mexico. It also enhances our understanding of the factors that determine the probability of sinking aggregates to fragment.more » « lessFree, publicly-accessible full text available February 1, 2026
-
The goal of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign is to develop a predictive understanding of the export, fate, and carbon cycle impacts of global ocean net primary production. To accomplish this goal, observations of export flux pathways, plankton community composition, food web processes, and optical, physical, and biogeochemical (BGC) properties are needed over a range of ecosystem states. Here we introduce the first EXPORTS field deployment to Ocean Station Papa in the Northeast Pacific Ocean during summer of 2018, providing context for other papers in this special collection. The experiment was conducted with two ships: a Process Ship, focused on ecological rates, BGC fluxes, temporal changes in food web, and BGC and optical properties, that followed an instrumented Lagrangian float; and a Survey Ship that sampled BGC and optical properties in spatial patterns around the Process Ship. An array of autonomous underwater assets provided measurements over a range of spatial and temporal scales, and partnering programs and remote sensing observations provided additional observational context. The oceanographic setting was typical of late-summer conditions at Ocean Station Papa: a shallow mixed layer, strong vertical and weak horizontal gradients in hydrographic properties, sluggish sub-inertial currents, elevated macronutrient concentrations and low phytoplankton abundances. Although nutrient concentrations were consistent with previous observations, mixed layer chlorophyll was lower than typically observed, resulting in a deeper euphotic zone. Analyses of surface layer temperature and salinity found three distinct surface water types, allowing for diagnosis of whether observed changes were spatial or temporal. The 2018 EXPORTS field deployment is among the most comprehensive biological pump studies ever conducted. A second deployment to the North Atlantic Ocean occurred in spring 2021, which will be followed by focused work on data synthesis and modeling using the entire EXPORTS data set.more » « less
An official website of the United States government
